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Summary .

Let Xy, Xo. . . ., Xk be independent normal random variables with
means 0y, 0o, .. ., 8k and the common variance unity. It is assumed that
8y € 62< ...< Bx. Kumar and Sharma {4] showed that the Pitman
estimator &, of 8 = (0,.6,, ..., 0k), that is, the- generalized Bayes
estimator of 8 with respect to the uniform prior on the space
{Q I I DR Ok}. is minimax when the loss function is the sum

of squared errors. In this paper we assume that the variances of the k

populations are not necessarily the same and prove the minimaxity of

the Pitman estimator with respect to a scale invariant loss funqtion.
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Introduction

Let X, . . ., X, be a random samplé from a population with
density function f(x-6), i = 1, 2 with respect to lebesgue measure.

Under the assumption that 8, < 6, Blumenthal and Cohen [1]

. obtained sufficient conditions for the admissibility and minimaxity
of the Pitman estimator of 8 = (8,, 8,). Cohen and Sackrowitz [2]

considered the estimation of larger of two translation parameters.
When the populations are normal they obtained a class of
admissible estimators. They also proved the minimaxity and
admissibility of the Pitman estimator with respect to the squared
error loss function. Kumar and Sharma [3] generalized the results
of Blumenthal and Cohen [1] to densities f |(x-8,) and {,(x -6,) where

f, and f, may be distinct, and later considered the estimation of k
ordered normal means with common variance unity and proved that
the Pitman estimator of § = ©, ..., 8,) is minimax when the loss

function is the sum of squared errors. In this paper we extend this
result to the case when the variances of the k populations are
unequal and the loss function is scale invariant.
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2. Result , ‘

Let X,. X,. ..., X be random variables with means 810 0gs s Oy
8,6, ... < B and unequal but known variances of, og. cees 012(
and the loss in estimating 6 = (6, ..., 6y bya = (... ak) be

) _
e, a = Z a‘) - @)

The Pitman estimator 8 = (25pl e k) is the generalized

Bayes estimator of 6 with respect to the uniform prior on
Q = {9 8,<6,< ...< e}andlsgivenby

feip(r_c_, 0)de : :
Spi (1) = 2 —  i=1,2....k. 2.2)
[ p(x, o) de
Q
where ,
_5 1 X -6 ‘ '
p(x 8 = £1 o (pA[ . ] (2.3)

with ¢ the standard normal probablhty density function. Followmg
Kumar and Sharma [4] define

‘w(x = | ©-% p(x @ de. 24
: .
D(» = | p(x ©de | @3
Q
and
Yl()_()=%%. i=1,....k (2.6)
Then —g— = L(z}‘q,'and 2.7)
: i C
8p (x)—x,+yl(x) i=1,...,k _(2.8)

Now we are ready to prove.
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Theorem 2.1 : The Pitman estimator 3, is minimax for § with respect
to the loss function (2.1). '

The risk of %, is given by

k
(X1+71(§)—01)2}
E
3 e {erg

Oy

k 2
k+z E{ Yl(}_.()+2(xl_vel)}’l()_()} 2.9)

o

R(®, &)

Following a modification in Stein’s identity [5], we have

L Ex -0 1)}';(X)—Ea§{ Y (X i=1.... .k
i

Using relations (2.4) - (2.7) we get

2
ﬁ E(X, - 8) 7,(X) = E[—y'—(? 19
i .

o *D()_()a_m“"’—‘)] 210

so that (2.9) is equivalent to

[X.aic Xo(X) 3 I(X)J_ely.(z)
— 2

Oy

R(, 8p)—k+ZE[ J 2.11)

D(X) oX;

The following two identities, similar to (2.12) and (2.14) in Kumar
and Sharma [4], can be easily established

An (x,2()_() v 2 uX) =0 forallx £ R" (2.12),
Oj axl —
S 2
y 55 D(X =0 forallx £ R* (2.13)
_ 1
Next define

Uy = Xi- Mo = 61, W = X1 —X;, Wy = 641 — 6y,
i=1,..., k-1. (2.14)

Then D (x) of (2.5) can be written as

Uy Y,

w=[ .. ] OL@( joi‘f’[%”‘J

-0
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A ‘
1 ¢ [u] duo duy . .. dugg (2.15)
Ok Ok
where u = (uy, ..., ug).

Using identity (2.13) one can prove

2 9« 3 3
-a—x—lD(z)—.—aulD(g). aka(1_<) au_I?(u) (2.16)
ajmd
2 D(x)= =2 DXw-=>Dw, i=1,2, ... kL

X, ouy. au,

Relations (2.6), (2.7), (2.12), (2.14) and (2.16) together with (2. 11)
now yield

i k-1
' 1 d
R@®, 8;) = k —Z:l W ’E[D( X D* ( U)J (2.17)
The fact that u, ’s are non-negative for 8 ¢ Q and D* ( u) is an
" increasing function of u, i=1,. . ., k-1 implies
R, &) < k forallg € Q. (2.18)

It can be seen that Theorem 2.1 of Kumar and Sharma [3] and
the corollary following it remain true for the loss function (2.1) and
so from the inequality (2.18) we conclude that § , is minimax for

estimating e when 6, < 6, < ...< 6,.

Remark : As in the case of equal variances, the estimator §; is

inadmissible and in both the cases the problem of obtaining an
improvement over §, is open.

3. Applications

The above problem of estimating ordered parameters, when the
ordering is known, arises in several agricultural, industrial,
sociological and economic studies. In the following’ exarnples we
describe some such situations..

Example 1 : Suppose we want to measure the effectiveness of a
fertilizer on a crop. For this we consider an experimental design
where Treatment 1 is to grow a crop using the fertilizer and
Treatment 2 is simply to grow the crop. If 6, and 8, are the average
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yields of two treatments, it is natural to expect that 8, > 6,. Also
8, — 6, will give a measure of effectiveness of the fertilizer.

Example 2 : In an intelligence test, in order to estimate the grasping

power of students, the following experiment was conducted. The
student carries, out a set of calculations twice on the same
calculating machine. It is clear that with the increased familiarity
with data he will take less time in second calculations. Thus if 6,

and 8, are the average speeds of both the calculations we will have
8, =26, and 6, - 6, will be give a measure of grasping power.
Example 3 : In an industrial experiment, changes are made in the

design of an automobile so as to increase fuel efficiency. If the
changes are effected in k stages 6, and denotes the average fuel

consumption at ith stage, we have 6; 26,2 ...> 6,.

As proved in the Theorem 2.1, the Pitman estimator is better
when compared to the natural estimator X = (X;,...,X)inall

these situations.
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