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Summary
Let Xi. X2 Xk be independent normal random variables with

means 0i, 02 9k and the common variance unity. It is assumed that
01 < 02 S . . . < 0k. Kumar and Sharma (41 showed that the Pitman
estimator 6p of 0 = (0i,'02 0^), that is, the generalized Bayes
estimator of 0 with respect to the uniform prior on the space
10 : 01 <02 < . . . < 0kl. is minimax when the loss function is the sum
of squared errors. In this pa.perwe assume that the variances of the k
populations are not necessarily thesame and prove the minimaxity of
the Pitman estimator with respect to a scale invariant loss funcUon.
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Introduction

Let X„, . . be a random sample from a population with
density function f(x-e,), i = 1, 2 with respect to lebesgue measure.
Under the assumption that Blumenthal and Cohen [1]
obtained sufficient conditions for the admissibiUty and minimaxity
ofthe Pitman estimator of6 = (9^, e^). Cohen and Sackrowltz [2]
considered the estimation oflarger of two translation parameters.
When the populations are normal they obtained a class of
admissible estimators. They also proved the minimaxity and
admisslbility of the Pitman estimator with respect to the squared
error loss function. Kumar and Sharma [3] generalized the results
ofBlumenthal and Cohen [1] to densities fJx- 0^) and f^{x - Q^) where
fj and may be distinct, and later considered the estimation of k
ordered normal means with common variance unity andproved that
the Pitman estimator of6 = (6^ is minimax when theloss
function is the sum ofsquared errors. In this paperwe extend this
result to the case when the variances of the k populations are
unequal and the loss function is scale invariant.
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2. Result

Let X,, Xg, .... be random variables with means 0^, Gg..... 0^.
0j, ^ 02 ^ ••• - 0k' unequal but known vcirlances Oj^, o^..... 0,^
and the loss in estimating 0 = (B^ bya = (a^..... a^) be

Ue. a) - X
r= 1

Oi-aif
af

[2.1)

The Pitman estimator 5^ = (Sp^ Sp^) is the generalized
Bayes estimator of 0 with respect to the tintform prior on

0: 0j <02 < . . . ^ 0k| and is given by

J 0iP(x, 0)d0
5pi(x) = ^ . 1 = 1.2.

J p(x. 0)d0

£2 =

Q

where

p (X, 0) = n "T,
1=1 ^1

Xj -01

Ol

, k. (2.2)

(2.3)

with (p the standard normal probability density'function. Following
Kumar and Sharma [4] define

and

Then

ai(x) = J (01-xi) p(x, 0)d0,
n

D( x) = J p( x. 0) d0
Q

yi(x) -
«! (x)
D(x)'

ao at (x)
/and

a Xi of

5p|(x) = xi + ri(x),

Now we are ready to prove.

i= 1, ,k.

i = 1, . . . .k.

(2.4)

(2.5)

(2.6)

(2.7)

(2.8)
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Theorem 2.1: The Pitman estimator 5p isminimaxfor0with respect
to the loss function (2.1).

The risk of5p is given by

R(0. 5p) - z E (Xi + yI (X) - 0i)^

1= 1

= k +X E yf(X) + 2(Xi-9.)yi(X)

1= 1

Following a modificationin Stein's identity [5], we have

^ E(X,-e,) y,(X) = y,(X).i= 1,. ...k.
Using relations (2.4) - (2.7) we get

of
E(Xi - 0.) y 1(X) = E Yf (X) , 13

a? ^D(X) aX,
so that (2.9) is equivalent to

R(0. 5p) =k+^ E
1= 1

D(X)

Xiai(X) a
2 + — ttl ( X)

a. ax,

9iyi(x)

of

(2.9)

(2.10)

(2.11)

The following twoidentities, similar to (2.12)and (2.14) in Kumar
and Sharma [4], can be easily established

Xi cc. (x) 3
2~ + W = 0 for all X £ r"

Oi o Xi — —

i= 1

Next define

Uo = Xj, = 01. Ui = Xi+i -Xi, Hi = 0,+i -0,.

i = 1 k-1.

Then D (x) of (2.5) can be written as

a -
D (X) = 0

a Xi —

Ol

for all X e R".

/ \

IHo
(P

Ol
V y

02 ^2

(2.12)

(2.13)

(2.14)
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+ • • • + Uk-11

TT ^Ok Ok

where u = ( Uj Ut-i).

Using identity (2.13) one can prove

and
I

Relations (2.6), (2.7), (2.12), (2.14) and (2.16) together with (2.11)
now yield

duo d^ii ... d^k-i (2.15)

k-1 .

^1 dR(e. 5p) = k-X E
1= 1

D( X) au.
D^(U) (2.17)

The fact that )j,, 's are non-negative for 0 e Oand D* (u) is an
increasing function of Hj, i = 1, . . ., k-1 implies

R(0, 5p) < k foralle e O. (2.18)

It can be seen that Theorem 2.1 of Kumar and Sharma [3] and
the corollary following it remain true for the loss function (2.1) and
so from the inequality (2.18) we conclude that 5p is minimax for
estimating 0 when 0j < 02 < . . . < 0^.

Remark ; As in the case of equal variances, the estimator 5p is
inadmissible and in both the cases the problem of obtaining an
improvement over 5p is open.

3. Applications

The above problem of estimating ordered parameters, when the
ordering is known, arises in several agricultural, industrial,
sociological and economic studies. In the following examples we
describe some such situations..

Example 1 : Suppose we want to measure the effectiveness of a
fertilizer on a crop. For this we consider an experimental design
where Treatment 1 is to grow a crop using the fertilizer and
Treatment 2 is simply to grow the crop. If ©j and 02 are the average
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yields of two. treatments, it is natural to expect that 0i > Gg. Also
01-02 will give a measure of effectiveness of the fertilizer.

Example2 : In an intelligence test, in order to estimate the grasping
power of students, the following experiment was conducted. The
student carries, out a set of calculations twice on the same
calculating machine. It is clear that with the increased familiarity
with data he will take less time in second calculations. Thus if Gj
and Ga are the average speeds of both the calculations we will have
Gj > 62 and Gj - 02 will be give a measure of grasping power.

Example 3 : In an industrial experiment, changes are made in the
design of an automobile so as to increase fuel efficiency. If the
changes are effected in k stages 0i and denotes the average fuel
consumption at ith stage, we have Gj > 02 > . . . > 0^.

As proved in the Theorem 2.1, the Pitman estimator is better
when compared to the natural estimator X=(, . . . , X^) in all
these situations.
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